## Lesson 11. Formulating Dynamic Programming Recursions

## 0 Warm up

Consider the knapsack problem we studied in Lesson 5:
Example 1. You are a thief deciding which precious metals to steal from a vault:

|  | Metal | Weight (kg) | Value |
| :--- | :--- | :---: | :---: |
| 1 | Gold | 3 | 11 |
| 2 | Silver | 2 | 7 |
| 3 | Platinum | 4 | 12 |

You have a knapsack that can hold at most 8 kg . If you decide to take a particular metal, you must take all of it. Which items should you take to maximize the value of your theft?

- We formulated the following DP for this problem by giving the following longest path representation:

longest
- Let $f_{t}(n)=$ length of a shortest path from node $t_{n}$ to the end node
- In the context of the knapsack problem:

- In other words, these are optimal values of subproblems of the knapsack problem


## 1 Formulating DP recursions

- Last lesson: recursions for shortest path problems
- Dynamic programs are not usually given as shortest/longest path problems
- However, it is usually easier to think about DPs this way
- Instead, the standard way to describe a dynamic program is a recursion that defines the optimal value of one subproblem in terms of the optimal values of other subproblem
- Let's formulate the knapsack problem in Example 1 as a DP, but now by giving its recursive representation
- Let

$$
w_{t}=\text { weight of metal } t \quad v_{t}=\text { value of metal } t \quad \text { for } t=1,2,3
$$

- Stages:

$$
\text { stage } t \leftrightarrow \begin{cases}\text { consider taking metal } t & t=1,2,3 \\ \text { end of decision-making process } & t=4\end{cases}
$$

- States: state $n \longleftrightarrow n$ kg remaining in knapsack $n=0,1, \ldots, 8$
- Allowable decisions $x_{t}$ at stage $t$ and state $n: \longleftrightarrow$ edges outgoing from node $t_{n}$

$$
\begin{aligned}
& \text { tan } \\
& \text { for } t=1,2,3 \\
& n=0,1, \ldots, 8
\end{aligned}
$$

- Contribution of decision $x_{t}$ at stage $t$ and state $n: \longleftrightarrow$ edge lengths

$$
v_{t} x_{t}=\left\{\begin{array}{ll}
v_{t} & \text { if } x_{t}=1 \quad(\text { take metal } t) \\
0 & \%
\end{array} \quad \text { for } t=1,2,3\right.
$$

- Value-to go function $f_{t}(n)$ at stage $t$ and state $n$ :

$$
\begin{array}{cr}
f_{t}(n)=\underset{\text { maximum value }}{ } \mathrm{w} / n \mathrm{~kg} \text { knapsack and } \quad \text { for } t=1,2,3,4 \\
\text { metals } t, t+1, \ldots, 3 \text { remaining. } & n=0,1, \ldots, 8
\end{array}
$$

- Boundary conditions:

$$
f_{4}(n)=0 \quad \text { for } n=0,1, \ldots, 8
$$

$$
\begin{aligned}
& x_{t} \text { must satisfy } \\
& x_{t} \in\left\{\begin{array}{lll}
0, & 1
\end{array}\right\} \\
& \omega_{t} x_{t} \leq n \leftarrow \begin{array}{c}
\text { we cans take metal } t \\
\text { only if we here cosh } \\
\text { cupacily. }
\end{array}
\end{aligned}
$$

- Recursion:


$$
\text { for } \begin{aligned}
t & =1,2,3 \\
n & =0,1, \ldots, 8
\end{aligned}
$$

- Desired value-to-go function value:
- In general, to formulate a DP by giving its recursive representation:


## Dynamic program - recursive representation

- Stages $t=1,2, \ldots, T$ and states $n=0,1,2, \ldots, N$
- Allowable decisions $x_{t}$ at stage $t$ and state $n$

$$
\begin{aligned}
& (t=1, \ldots, T-1 ; n=0,1, \ldots, N) \\
& (t=1, \ldots, T ; n=0,1, \ldots, N) \\
& (t=1, \ldots, T ; n=0,1, \ldots, N) \\
& (n=0,1, \ldots, N) \\
& (t=1, \ldots, T-1 ; n=0,1, \ldots, N)
\end{aligned}
$$

- Contribution of decision $x_{t}$ at stage $t$ and state $n$
- Value-to-go function $f_{t}(n)$ at stage $t$ and state $n$
- Boundary conditions on $f_{T}(n)$ at state $n$
- Recursion on $f_{t}(n)$ at stage $t$ and state $n$

$$
f_{t}(n)=\min _{x_{t} \text { allowable } \operatorname{mox}}\left\{\binom{\text { contribution of }}{\text { decision } x_{t}}+f_{t+1}\left(\begin{array}{c}
\text { new state } \\
\text { resulting } \\
\text { from } x_{t}
\end{array}\right)\right\}
$$

- Desired value-to-go function value
- How does the recursive representation relate to the shortest/longest path representation?
$\left.\begin{array}{lll}\hline \text { Shortest/longest path } & \text { Recursive } \\ \hline \begin{array}{l}\text { node } t_{n} \\ \text { edge }\left(t_{n},(t+1)_{m}\right)\end{array} & \leftrightarrow & \text { state } n \text { at stage } t \\ \text { allowable decision } x_{t} \text { in state } n \text { at stage } t \text { that results in } \\ \text { being in state } m \text { at stage } t+1\end{array}\right]$


## 2 Solving DP recursions

- To improve our understanding of how this recursive representation works, let's solve the DP we just wrote for the knapsack problem
- We solve the DP backwards:
- start with the boundary conditions in stage $T$
- compute values of the value-to-go function $f_{t}(n)$ in stages $T-1, T-2, \ldots, 3,2$
- ... until we reach the desired value-to-go function value
- Stage 4 computations - boundary conditions:

$$
f_{4}(n)=0 \quad \text { for } n=0,1, \ldots, 8
$$

- Stage 3 computations:

$$
\begin{aligned}
& f_{3}(8)=\max _{\substack{x_{3}\left\{\{0,1\} \\
4 x_{3} \leq 8\right.}}\left\{12 x_{3}+f_{4}\left(8-4 x_{3}\right)\right\}=\max \left\{0+f_{4}(8), 12(1)+f_{4}(8-4)\right\}=12 \\
& f_{3}(7)=\max _{\substack{\left.x_{3} \in f_{0}, 1\right\} \\
4 x_{3} \leq 7}}\left\{12 x_{3}+f_{4}\left(7-4 x_{3}\right)\right\}=\max \left\{0+f_{4}^{0}(7), 12(1)+f_{4}(7-4)\right\}=12 \\
& f_{3}(6)=\max _{\substack{x_{3} \in\left\{0,13 \\
4 x_{3} \leq 6\right.}}\left\{12 x_{3}+f_{4}\left(6-4 x_{3}\right)\right\}=\max \left\{0+f_{4}(6), 12(1)+f_{4}(6-4)\right\}=12 \\
& f_{3}(5)=\max _{\substack{x_{3} \in\left\{f_{0}, 1\right\} \\
4 x_{3} \leq 5}}\left\{12 x_{3}+f_{4}\left(5-4 x_{3}\right)\right\}=\max \left\{0+f_{4}(5), 12(1)+f_{4}(5-4)\right\}=12 \\
& f_{3}(4)=\max _{\substack{x_{3} \in f_{0}, 13 \\
4 x_{3} \leq 4}}\left\{12 x_{3}+f_{4}\left(4-4 x_{3}\right)\right\}=\max \left\{0+f_{4}(4), 12(1)+f_{4}(4-4)\right\}=12 \\
& f_{3}(3)=\max _{\substack{x_{3} \in\{0,1\} \\
4 x_{3} \leq 3}}\left\{12 x_{3}+f_{4}\left(3-4 x_{3}\right)\right\}=\max \left\{0+f_{4}(3)\right\}=0 \\
& f_{3}(2)=\max _{\substack{x_{3} \in\left\{0,13 \\
4 x_{3} \leq 2\right.}}\left\{12 x_{3}+f_{4}\left(2-4 x_{3}\right)\right\}=\max \left\{0+f_{4}(2)\right\}=0 \\
& f_{3}(1)=\max _{\substack{x_{3} \in\left\{0,13 \\
4 x_{3}<1\right.}}\left\{12 x_{3}+f_{4}\left(1-4 x_{3}\right)\right\}=\max \left\{0+f_{4}(1)\right\}=0 \\
& f_{3}(0)=\max _{\substack{x_{3} \in\left\{0,13 \\
4 x_{3} \leq 0\right.}}\left\{12 x_{3}+f_{4}\left(0-4 x_{3}\right)\right\}=\max \left\{0+\dot{f}_{4}(0)\right\}=0
\end{aligned}
$$

- Stage 2 computations:

$$
f_{t}(n)=\max _{\substack{x_{t} \in\{0,1\} \\
w_{t} x_{t} \leq n}}\left\{v_{t} x_{t}+f_{t+1}\left(n-w_{t} x_{t}\right)\right\} \quad \text { for } \begin{aligned}
& t=1,2,3 \\
& n=0,1, \ldots, 8
\end{aligned}
$$

$$
\begin{aligned}
& f_{2}(8)=\max _{\substack{x_{1} \in\{0,1\} \\
2 x_{2} \leq 8}}\left\{7 x_{2}+f_{3}\left(8-2 x_{2}\right)\right\}=\max \left\{0+f_{3}^{12}(8), 7+f_{3}^{12}(6)\right\}=19 \\
& f_{2}(7)=\max _{\substack{\left.x_{2} \in 0,1\right\} \\
2 x_{2} \leq 7}}\left\{7 x_{2}+f_{3}\left(7-2 x_{2}\right)\right\}=\max \left\{0+f_{3}^{12}(7), 7+f_{3}^{12}(5)\right\}=19 \\
& f_{2}(6)=\max _{\substack{x_{2} \in\{0,1\} \\
2 x_{2} \leq 6}}\left\{7 x_{2}+f_{3}\left(6-2 x_{2}\right)\right\}=\max \left\{0+f_{3}^{\prime 2}(6), 7+f_{3}^{12}(4)\right\}=19 \\
& f_{2}(5)=\max _{\substack{x_{2} \in\{0,1\} \\
2 x_{2} \leq 5}}\left\{7 x_{2}+f_{3}\left(5-2 x_{2}\right)\right\}=\max \left\{0+f_{3}^{12}(5), 7+f_{3}^{0}(3)\right\}=12 \\
& f_{2}(4)=\max _{x_{2} \in\{0,1\}}^{2 x_{2} \leq 4}\left\{77 x_{2}+f_{3}\left(4-2 x_{2}\right)\right\}=\max \left\{0+f_{3}^{\prime 2}(4), 7+f_{3}^{0}(2)\right\}=12 \\
& f_{2}(3)=\max _{x_{2} \in\{0,13}^{2 x_{2} \leq 3}\left\{\left\{7 x_{2}+f_{3}\left(3-2 x_{2}\right)\right\}=\max \left\{0+f_{3}^{0}(3), 7+f_{3}^{0}(1)\right\}=7\right. \\
& f_{2}(2)=\max _{x_{2} \in\{0,13}^{2 x_{2} \leq 2}\left\{7 x_{2}+f_{3}\left(2-2 x_{2}\right)\right\}=\max \left\{0+f_{3}^{0}(2), 7+f_{3}^{0}(0)\right\}=7 \\
& f_{2}(1)=\max _{\substack{x_{2} \in\left\{0,13 \\
2 x_{2} \leq 1\right.}}\left\{7 x_{2}+f_{3}\left(1-2 x_{2}\right)\right\}=\max \left\{0+f_{3}^{0}(1)\right\}=0 \\
& f_{2}(0)=\max _{\substack{x_{2} \in\{0,1\} \\
2 x_{2} \leq 0}}\left\{7 x_{2}+f_{3}\left(0-2 x_{2}\right)\right\}=\max \left\{0+f_{3}^{0}(0)\right\}=0
\end{aligned}
$$

- Stage 1 computations - desired value-to-go function:

$$
f_{1}(8)=\max _{x_{1} \in\{0,1\}}\left\{11 x_{1}+f_{2}\left(8-3 x_{1}\right)\right\}=\max \left\{0+f_{2}^{19}(8), 11+f_{2}^{12}(5)\right\}=23
$$

- Maximum value of theft:

$$
f_{1}(8)=23
$$

- Metals to take to achieve this maximum value:
$x_{1}=1, x_{2}=0, x_{3}=1 \quad \Rightarrow$ Take metals 1 and 3


## 3 Another example

Example 2. The Dijkstra Brewing Company is planning production of its new limited run beer, Primal Pilsner. The company must supply 1 batch next month, then 2 and 4 in successive months. Each month in which the company produces the beer requires a factory setup cost of $\$ 5,000$. Each batch of beer costs $\$ 2,000$ to produce. Batches can be held in inventory at a cost of $\$ 1,000$ per batch per month. Capacity limitations allow a maximum of 3 batches to be produced during each month. In addition, the size of the company's warehouse restricts the ending inventory for each month to at most 3 batches. The company has no initial inventory.

The company wants to find a production plan that will meet all demands on time and minimizes its total production and holding costs over the next 3 months. Formulate this problem as a dynamic program by giving its recursive representation. Solve the dynamic program.

## Formulating the DP

- Back in Lesson 5, we formulated this problem as a dynamic program with the following shortest path representation:
- Stage $t$ represents the beginning of month $t(t=1,2,3)$ or the end of the decision-making process $(t=4)$.
- Node $t_{n}$ represents having $n$ batches in inventory at stage $t(n=0,1,2,3)$.


| Month | Production amount | Edge |  | Edge length |
| :---: | :---: | :--- | :--- | :--- |
| 1 | 0 | $\left(1_{n}, 2_{n-1}\right)$ | for $n=1,2,3$ | $1(n-1)$ |
| 1 | 1 | $\left(1_{n}, 2_{n}\right)$ | for $n=0,1,2,3,4$ | $5+2(1)+1(n)$ |
| 1 | 2 | $\left(1_{n}, 2_{n+1}\right)$ | for $n=0,1,2$ | $5+2(2)+1(n+1)$ |
| 1 | 3 | $\left(1_{n}, 2_{n+2}\right)$ | for $n=0,1$ | $5+2(3)+1(n+2)$ |
| 2 | 0 | $\left(2_{n}, 3_{n-2}\right)$ | for $n=2,3$ | $1(n-2)$ |
| 2 | 1 | $\left(2_{n}, 3_{n-1}\right)$ | for $n=1,2,3$ | $5+2(1)+1(n-1)$ |
| 2 | 2 | $\left(2_{n}, 3_{n}\right)$ | for $n=0,1,2,3$ | $5+2(2)+1(n)$ |
| 2 | 3 | $\left(2_{n}, 3_{n+1}\right)$ | for $n=0,1,2$ | $5+2(3)+1(n+1)$ |
| 3 | 0 | not possible |  |  |
| 3 | 1 | $\left(3_{n}, 4_{n-3}\right)$ | for $n=3$ | $5+2(1)+1(n-3)$ |
| 3 | 2 | $\left(3_{n}, 4_{n-2}\right)$ | for $n=2,3$ | $5+2(2)+1(n-2)$ |
| 3 | 3 | $\left(3_{n}, 4_{n-1}\right)$ | for $n=1,2,3$ | $5+2(3)+1(n-1)$ |

- Let $d_{t}=$ number of batches required in month $t$, for $t=1,2,3$
- Stages:

$$
\text { stage } t \longleftrightarrow \begin{cases}\text { beginning of month } t & t=1,2,3 \\ \text { end of decision-making process } & t=4\end{cases}
$$

- States:
state $n \longleftrightarrow n$ batches in inventory $n=0,1,2,3$
- Allowable decisions $x_{t}$ at stage $t$ and state $n$ :
$x_{t}$ must satisfy: $x_{t} \in\{0,1,2,3\} \longleftarrow$ production capacity.

for $t=1,2,3$

$$
n=0,1,2,3
$$

$$
n+x_{t} \geqslant d_{t}
$$

- Contribution of decision $x_{t}$ at stage $t$ and state $n$ :

$$
\begin{aligned}
5 I\left(x_{t}\right)+2 x_{t} & +1\left(n+x_{t}-d_{t}\right) \\
\text { for } t & =1,2,3 \\
n & =0,1,2,3
\end{aligned} \quad \text { where } I\left(x_{t}\right)= \begin{cases}1 & \text { if } x_{t}>0 \\
0 & \% / w\end{cases}
$$

- Value-to go function $f_{t}(n)$ at stage $t$ and state $n$ :
$f_{t}(n)=$ minimum cost of meeting demand in months $t, \ldots, 3$ with initial inventory of $n$ batches
for $t=1, \ldots, 4$

$$
n=0, \ldots, 3
$$

- Boundary conditions:

$$
f_{4}(n)=0 \quad \text { for } n=0,1,2,3
$$

- Recursion:

$$
f_{t}(n)=\min _{\substack{x_{t} \in\{0,1,2,3\} \\ 0 \leq n+x_{t}-d_{t} \leq 3}}\left\{5 I\left(x_{t}\right)+2 x_{t}+1\left(n+x_{t}-d_{t}\right)+f_{t+1}\left(n+x_{t}-d_{t}\right)\right\}
$$

for $t=1,2,3 ; n=0,1,2,3$

- Desired value-to-go function value:

$$
f_{1}(0)
$$

Solving the DP

$$
f_{t}(n)=\min _{\substack{x_{t} \in\{0,1,2,3\} \\ 0 \leq n+x_{t}-d_{t} \leq 3}}\left\{5 I\left(x_{t}\right)+2 x_{t}+1\left(n+x_{t}-d_{t}\right)+f_{t+1}\left(n+x_{t}-d_{t}\right)\right\}
$$

- Stage 4 computations - boundary conditions:

$$
f_{4}(n)=0 \quad n=0,1,2,3
$$

- Stage 3 computations:

$$
\begin{aligned}
& \begin{array}{l}
\left.x_{3} \text { can be } 1,2,3 \min _{\substack{x_{3} \in\{0,1,2,3\} \\
0 \leq 3+x_{3}-4 \leq 3}}^{f_{3}(3)}\left\{\begin{array}{l} 
\\
0
\end{array}\right)\left(x_{3}\right)+2 x_{3}+1\left(3+x_{3}-4\right)+f_{4}\left(3+x_{3}-4\right)\right\}
\end{array} \\
& =\min \left\{5+2(1)+1(0)+f_{4}(0), 5+2(2)^{10}+1(1)+f_{4}(1), 5+2(3)+1(2)+f_{4}(2)\right\}=7 \\
& 0 \leq 2+x_{3}-4 \leq 3 \rightarrow f_{3}(2)=\min \left\{5+2(2)+1(0)+f_{4}(0), 5+2(3)+1(1)+f_{4}(1)\right\}=9 \\
& \Rightarrow x_{3} \text { can be } 2,3 \\
& \underset{\substack{0 \leq 1+x_{3}-4 \leq 3 \\
\Rightarrow x_{3} \text { can be } 3}}{\min \{5+2(3)+f_{3}(1)=\underbrace{11}(0)+f_{4}(0)\}=11} \\
& \underset{\substack{0 \leq 0+x_{3}-4 \leq 3 \\
\Rightarrow x_{3} \\
\text { cant be }}}{ } f_{3}(0)=\min \{ \}=+\infty \leftarrow \text { no allowable decisions } \\
& \Rightarrow x_{3} \text { annititing }
\end{aligned}
$$

- Stage 2 computations:

$$
\begin{aligned}
& \underset{\substack{0 \leq 3+x_{2}-2 \leq 3 \\
\Rightarrow x_{2} \text { can be } 0,1,2}}{ } \rightarrow f_{2}(3)=\min \left\{2(0)+1(1)+f_{3}(1), 5+2(1)+1(2)+f_{3}(2), 5+2(2)+1(3)+f_{3}(3)\right\}=12 \\
& \Rightarrow x_{2} \text { can be } 0,1,2 \quad+\infty \\
& 0 \leqslant 2+x_{2}-2 \leqslant 3 \rightarrow f_{2}(2)= \\
& \min \left\{1(0)^{+\infty}+f_{3}(0), 5+2(1)+1(1)+f_{3}(1), 5+2(2)^{20}+1(2)+f_{3}(2),\right. \\
& \left.\Rightarrow x_{2} \text { can be } 0,1,2,35 \quad 5+2(3)+1(3)+f_{3}(3)\right\}=19 \\
& 0 \leq 1+x_{2}-2 \leq 3 \rightarrow f_{2}(1)=\min \left\{5+2(1)^{+\infty}+1(0)+f_{3}(0), 5+2(2)+1(1)+f_{3}(1), 5+2(3)^{22}+1(2)+f_{3}(2)\right\}=21 \\
& \Rightarrow x_{2} \text { can be } 1,2,3+23 \\
& \min _{0 \leq 0+x_{2}-2 \leq 3 \rightarrow}\left\{5+2(2)+1(0)+f_{3}(0), 5+2(3)+1(1)+f_{3}(1)\right\}=23 \\
& \Rightarrow x_{2} \text { can be } 2,3
\end{aligned}
$$

- Stage 1 computations - desired value-to-go function:

$$
\begin{aligned}
& 0 \leq 0+x_{1}-1 \leq 3 \rightarrow f_{1}(0)=\min \left\{\begin{array}{c}
\left.5+2(1)+1(0)+f_{2}(0), 5+2(2)+1(1)+f_{2}(1), 5+2(3)+1(2)+f_{2}(2)\right\}
\end{array}\right. \\
& \Rightarrow x_{1} \text { can be } 1,2,3 \\
& =30
\end{aligned}
$$

- Minimum total production and holding cost:

$$
f_{1}(0)=30
$$

- Production amounts that achieve this minimum value:
$x_{1}=1, x_{2}=3, x_{3}=3 \Rightarrow$ Produce 1 batch in month 1
3 batches in months 2 and 3


## A Problems

Problem 1 (Dynamic Distillery - recursion). You have been put in charge of launching Dynamic Distillery's new bourbon whiskey. There are 4 nonoverlapping phases: research, development, manufacturing system design, and initial production and distribution. Each phase can conducted the two speeds: normal or priority. The times required (in months) to complete each phases at the two speeds are:

| Level | Research | Development | Manufacturing <br> System Design | Initial Production <br> and Distribution |
| :--- | :---: | :---: | :---: | :---: |
| Normal | 4 | 3 | 5 | 2 |
| Priority | 2 | 2 | 3 | 1 |

The costs (in millions of $\$$ ) of complete each phase at the two speeds are:

| Level | Research | Development | Manufacturing <br> System Design | Initial Production <br> and Distribution |
| :--- | :---: | :---: | :---: | :---: |
| Normal | 2 | 2 | 3 | 1 |
| Priority | 3 | 3 | 4 | 2 |

You have been given $\$ 10$ million to execute the launch as quickly as possible. Formulate this problem as a dynamic program by giving its recursive representation. Solve the dynamic program.

Problem 2 (Pear Computers - recursion). Pear Computers has a contract to deliver the following number of laptop computers during the next three months:

|  | Month 1 | Month 2 | Month 3 |
| :--- | :---: | :---: | :---: |
| Laptop computers required | 200 | 300 | 200 |

For each laptop produced during months 1 and 2 , a $\$ 100$ cost is incurred; for each laptop produced during month 3 , a $\$ 120$ cost is incurred. Each month in which the company produces laptops requires a factory setup cost of $\$ 2,500$. Laptops can be held in a warehouse at a cost of $\$ 15$ for each laptop in inventory at the end of a month. The warehouse can hold at most 400 laptops.

Laptops made during a month may be used to meet demand for that month or any future month. Manufacturing constraints require that laptops be produced in multiples of 100 , and at most 300 laptops can be produced in any month. The company's goal is to find a production plan that will meet all demands on time and minimizes its total production and holding costs over the next 3 months. Formulate this problem as a dynamic program by giving its recursive representation. Solve the dynamic program.

